If you talk about power laws, read this paper:

A. Clauset, C. R. Shalizi and M. E. J. Newman, “Power-law distributions in empirical data”, arxiv:0706.1062. Let me just repeat three key points that Shalizi summarizes on his blog:

Lots of distributions give you straight-ish lines on a log-log plot. True, a Gaussian or a Poisson won’t, but lots of other things will. Don’t even begin to talk to me about log-log plots which you claim are “piecewise linear”.

And:

Abusing linear regression makes the baby Gauss cry. Fitting a line to your log-log plot by least squares is a bad idea. It generally doesn’t even give you a probability distribution, and even if your data do follow a power-law distribution, it gives you a bad estimate of the parameters. You cannot use the error estimates your regression software gives you, because those formulas incorporate assumptions which directly contradict the idea that you are seeing samples from a power law. And no, you cannot claim that because the line “explains” a lot of the variance that you must have a power law, because you can get a very high R^2 from other distributions (that test has no “power”). And this is without getting into the errors caused by trying to fit a line to binned histograms.

It’s true that fitting lines on log-log graphs is what Pareto did back in the day when he started this whole power-law business, but “the day” was the 1890s. There’s a time and a place for being old school; this isn’t it.

In addition,

Use a goodness-of-fit test to check goodness of fit. In particular, if you’re looking at the goodness of fit of a distribution, use a statistic meant for distributions, not one for regression curves. This means forgetting about R^2, the fraction of variance accounted for by the curve, and using the Kolmogorov-Smirnov statistic, the maximum discrepancy between the empirical distribution and the theoretical one. If you’ve got the right theoretical distribution, KS statistic will converge to zero as you get more data (that’s the Glivenko-Cantelli theorem). The one hitch in this case is that you can’t use the usual tables/formulas for significance levels, because you’re estimating the parameters of the power law from the data. This is why God, in Her wisdom and mercy, gave us the bootstrap.

If the chance of getting data which fits the estimated distribution as badly as your data fits your power law is, oh, one in a thousand or less, you had better have some other, very compelling reason to think that you’re looking at a power law.

The good news is that, despite having been submitted for publication too soon to cite Clauset et al., this paper is largely following the advice above and is trying to convey the message to sedimentary geologists (hopefully others will look at it as well) that straightish-looking lines on log-log plots with a large R squared are not enough evidence for power-law behavior.

Related previous posts:
The fractal nature of Einstein’s and Darwin’s letter writing
My talk on bed thicknesses and power laws
On cumulative probability curves
Power laws and log-log plots II.
Power laws and log-log plots I.

Jézus nem járhatott vízen, esetleg puliszkán (avagy milyen egy nem-newtoni folyadék)

Habár az fizikai lehetetlenség, hogy valaki – minden segédeszköz nélkül – a víz színén sétáljon, mint azt állítólag Jézus tette (yeah, right), vannak folyadékok, amelyek felszínén valóban lehet mezítláb közlekedni. Jó példa az alábbi Youtube videó, amelyikben egy medencét finomra őrölt kukoricaliszttel és vízzel töltöttek tele, hogy utána lezserül szaladgáljanak a víz, jobbanmondva puliszka tetjén.

A fizikai magyarázat egyszerű (még én is értem): a víz egy newtoni folyadék, a puliszka pedig nem. A newtoni folyadékokat az jellemzi, hogy a nyírás sebessége (angol ‘shear rate’) egyenesen arányos a nyírófeszültséggel (angol ‘shear stress’). A kettő közötti arány nem egyéb, mint a viszkozitás. Ha a nyírófeszültséget a nyirássebesség függvényében ábrázolod, egy, az origóból kiinduló egyenest kapsz. Így viselkedik a víz. Ezzel szemben a puliszka nehezen deformálódik, azaz folyik, ha a nyírássebesség nagy, és könnyebben, ha a nyírássebesség kicsi; a viszkozitása nő a nyírássebességgel együtt. Ezért lehet szaladgálni a puliszka felszínén; és ezért süllyed bele a tag a videón a puliszkába, mikor nem mozog elég gyorsan. A nyírófeszültség-nyirássebesség függvény nem egy egyenes, hanem egy felfele konkáv görbe. A puliszka egy dilatáns (dilatant) folyadék; ezzel szemben a pszeudoplasztikus folyadékok nyírófeszültség-nyirássebesség görbéje felfele konvex, azaz a viszkozitás csökken ahogy a nyirássebesség nő. Ilyenek például a festékek.

Egy harmadik kategória a Bingham folyadék, vagy plasztikus folyadék (angol Bingham plastic). Ez csak akkor kezd folyni, hogyha a nyírófeszültség meghalad egy kritikus határt. Ezt a modellt hasznáják például az iszapfolyások és törmelékfolyások leírására.

Na de ennyi elég a puliszka-fizikából.

Geologic maps in Google Earth

One of the best ways to really start understanding the geology of an area is to look at the geologic map in Google Earth. Of course, unless you are interested in San Francisco or some other top notch place, you will not find the geologic map available in kmz or kml format (although you can get the whole US geological map here, and they are working on covering most of the globe).

Before that happens however, with a little patience it is possible to draw your own maps in Google Earth. You can use an image overlay as a starting point, and draw polygons on it after you managed to position it properly. As a quick test (well, actually it took me almost one day to do it), I created a small map that covers part of the southern East Carpathians in Romania, an area where I did some work for my thesis. It is based on the Geologic Map of Romania, 1:50000 scale, that is, one sheet from the series, edited by Murgeanu et al. and published in 1968. Old stuff, but good stuff. And a lot of work.

A Barcaság és Háromszék morfológiája


Ez a digitális domborzati modell (digital elevation model) az ingyenes 3DEM programmal készült. Az adatokat a USGS honlapjáról lehet letölteni. Néhány számomra fontos helyet bejelöltem a képen. A 3DEM-mel három dimenziós diagramokat is könnyü produkálni. Így néznek ki például a Hargita vulkáni kúpjai:


(Nagyobb felbontásért kattints a képekre.)

Kovászna és Komandó nagy felbontásban a Google Earth-en

Kovászna, Gelence és Komandó környéke újabban magas felbontásban látható a Google Earth-en. Így néz ki Kovászna, a háttérben a Siklóval (egy egyenes vonal a bal felső sarokban látható hegyen):


A képre kattintva a nagy felbontású fotó is értékelhető. Persze a legjobb ha az ember ezeket a Google Earth-ben nézi.

No vestige of a beginning, no prospect of an end

When James Hutton saw the unconformity at Siccar Point, where only slightly tilted 345 million years old Old Red Sandstone layers are sitting on top of near-vertical beds of ~425 million years old Silurian greywackes, he realized that such structures could not have formed in only a few thousand years. First, the sediment in the older formation was deposited in horizontal layers; it got buried, compacted and became hard rock; it was tilted to an almost vertical position and lifted above sea level; was eroded by subaerial erosion; and was buried again by much younger sediment that was itself later cemented and tilted by tectonic forces. Most of these processes can be relatively well observed and tracked, especially today, and they are extremely slow compared to most of the things we are dealing with in a human lifetime: both erosion and sedimentation happens at the rate of a few millimeters to centimeters a year, that is, slower than the nail grows. Tectonic movements are not much faster either. Hutton of course had no idea of the absolute age of the rocks, and had no precise measurements of erosion, sedimentation and uplift rates available, but he clearly came to the realization that geology is happening on a timescale a few orders of magnitude larger than that of the Bible and of known human history:

“Here are three distinct successive periods of existence, and each of these is, in our measurement of time, a thing of infinite duration. …The result, therefore, of this physical inquiry is, that we find no vestige of a beginning, no prospect of an end.”

Siccar Point is impressive and one of the most important sites in the history of geology, but the unconformity of all unconformities must be the one in Grand Canyon, appropriately called the Great Unconformity. This is how it looks like from Lipan Point, on the southern rim of the canyon:


And here is another shot with a broader perspective:


The tilted reddish strata in the lower part of the first photo are the Dox Formation; the darker rocks above this belong to the Cardenas Basalt. Both of these formations are of Mesoproterozoic age; the overlying horizontal ledge of rock is the Cambrian Tapeats Sandstone. The time gap between the Cambrian and the Proterozoic is 200 million years, about three times longer than the missing time at Siccar Point. Although the unconformity lower in the stratigraphy exposed at Grand Canyon, between the crystalline basement rocks and Mesoproterozoic sediments represents an even larger gap of 475 million years, the ‘great unconformity’ is visually much more impressive.

It is ridiculous that more than two hundred years after Hutton saw no ‘vestige of a beginning’, and initiated modern geology, there are people who seriously think that the Grand Canyon was carved by the biblical flood, or that sedimentation and erosion can take place at extremely high rates so that all geologic history would fit into six thousand years.

Such idiocies keep showing up over and over again, and I start to think with Hutton one more time that, unfortunately, there is no prospect of an end.

ps. Suggested readings:
Annals of the Former World by John McPhee; there is a highly readable account of Hutton’s discovery of unconformities in the first part of the book, “Basin and Range”.
Vestiges of James Hutton – a nice article about Hutton in American Scientist.

Földismei nyelvenczkedések

Kovag. Zöldle. Tülle. Kigyla. Berzle. Jegeczes. Mandolaképű. Törgyületes. Görgyületes. Vaséleg. Tülleszirt. Szemegle. Csengle. Szivagkőzetek. Puhányok és burányok. Talajos lánczburány. Reszelények. Közönséges iglény. Vonalozott gyöngér. Kétkarélyú bölle. Knigti ötizke. Ránczos köldöny. Csehországi csodány. Blumenbachi rejlöny. Ősikék. Talányos hálony. Burtini bagócsa. Sugáros köldöny. Bordacsos zugoncz. Fegyverzett fejbökény. Legyező dörgész. Hosszúröpű tompócz. Kerekdedes iszapka. Díszes lobogány. Reczés serlegőcz. Desznójersi emlőcse. Soros körvöny. Marsi szörbencs. Élesbordájú fúrhabany. Forgonczféle homár. Valdi gyöngyike. Ferde falány. Tövises gerencs. Lapos fodorcza. Bükös bölök. Általános kögöcske. Köröczös csészike. Hatszögű bököcz.

S a nagy hajdanócz.

[Szemelvények Mihálka Antal 1862-es geológia tankönyvéből; T3 Kiadó, 2006, Boér Hunor előszavával].

Sedimentology on Mars: wet or dry gravity flows?

Once again, the ‘water on Mars’ subject made it to the headlines: researchers claim that recent gully activity that took place in the last few years (as documented by photographs taken in 1999 and 2005) suggests that watery sediment flows (debris flows) are shaping the planet’s surface as we speak.

The problem is, of course, that it is difficult to keep water liquid in an environment where the temperature is usually way below 0 degrees Celsius and the atmospheric water vapor pressure is also very low. And, as far as I am concerned, the morphology of the gullies and of the associated deposits does not rule out deposition from dry granular flows at all. Of course, several papers have been written on the subject; here is, for example, an opinion from Allan Treiman (2003):

The salient features of the Martian gullies [Malin and Edgett, 2000, 2001] are consistent with their origin as dry flows of eolian sediment: gully deposits are fine granular material (erodable by wind); eolian sediment are available where gullies form; the distribution of gullies are consistent with deposition of sediment from wind; and the orientations of gullies are similarly consistent with wind patterns. Further, it is clear that granular materials can flow as if they were Bingham liquids, and granular flows can produce landforms with all of the geomorphic features of Martian gullies. No known data concerning the gullies (chronological, geomorphic, or geologic) falsify this hypothesis, so it is worth further investigation.

I just find it interesting that, by the time the story reaches the media, all the uncertainties disappear, and the story is unequivocal: watery flows must occur on Mars today, period.