Snorkeling and geology in Kealakekua Bay, Big Island, Hawaii

For a long time, I didn’t think it was worth spending more than an hour on a beach, even the most beautiful ones, unless there were some nice cliffs nearby showing some interesting geology. My views in this regard have changed dramatically about three years ago, when I spent a week on The Big Island of Hawaii, and the hotel where we were staying offered free rental of snorkeling gear. I put on the mask and the fins, trying to remember how this was supposed to work (I did a bit of snorkeling in Baja California many years before that), and put my face into the not-too-interesting-looking waters in the front of the hotel.

Kealakekua Bay in Google Earth, with some explanations added

I was in for a surprise. The water was far from crystal clear, but I could still see fantastic coral creations lined up along the bay and lots of fish of so many colors and patterns that it felt unreal. Until then I thought that this kind of scenery was hard to see unless you were a filmmaker working for Discovery Channel or a marine biologist specializing in tropical biodiversity. The next day I spotted a couple of green turtles frolicking in the water, clearly not bothered by the nearby snorkelers, and I already knew that I needed to look into the possibility of buying a simple underwater camera.

Lots of coral, mostly belonging to the genera Lobites (lobe coral) and Pocillopora (cauliflower coral)

Three years later I went back to the Big Island with more excitement about tropical beaches, plus bigger plans and a bit more knowledge about snorkeling. After going through a few well-known snorkeling sites on the west coast, like Kahalu’u Beach in Kona and Two Step near Pu’uhonua o Honaunau park, we got on a nice boat (run by a company called Fair Wind – strongly recommended!) and did some snorkeling in Kealakekua Bay.

Visibility in Kealakekua Bay is usually very good

Old wrinkles of pahoehoe lava getting encrusted by algae and corals and chewed up by sea urchins

Kealakekua Bay is difficult to reach; there is no road and no parking lot nearby. You either have to hike in, paddle through the bay in a kayak, or take a boat. I have heard before that this was the best snorkeling spot in Hawai’i, but I think that is an understatement. Unlike all the other spots we tried during the last few years in Hawaii (and that includes several beaches on Kauai and Hanauma Bay on Oahu, the presidential snorkeling site), the water at Kealakekua Bay was calm and very clear, with fantastic visibility.

Heads of cauliflower coral, with yellow tangs for scale

I will not attempt to describe this whole new world; instead I will let the photographs speak for themselves (as always, more photos at Smugmug). Even better, if you go to the Big Island, make sure that you visit this place with some snorkeling gear.

Yellow tangs (Zebrasoma flavescens) often congregate in large schools and it is difficult to stop taking pictures of them

When I was at Kealakekua Bay, I didn’t know much about the local geology. The big cliff bordering the bay toward the northwest, called Pali Kapu o Keoua (see image above), shows a number of layered lava flows that belong to the western flank of Mauna Loa; and I suspected that this must have been a large fault scarp, but that was the end of my geological insight. A couple of hours worth of research after I got home revealed that Pali Kapu o Keoua was a fault indeed: it is called the Kealakekua Fault and it has been mapped, along with the associated submarine geomorphological features, in the 1970s and 1980s by U.S. Geological Survey geoscientists.  It turns out that one of the shipboard scientists and key contributors to these studies was Bill Normark (see also a post about Bill at Clastic Detritus). While in California in the late 1990s, I was lucky to get to know Bill and have some truly inspiring discussions with him about turbidites, geology, and wine, so this was a doubly valuable little discovery to me.

So what is the origin of the Kealakekua Fault? The Hawaiian Islands are far away from any tectonic plate boundaries, so there is not a lot of opportunity here for inverse or strike-slip faults to develop. However, the Hawaiian volcanoes are humongous mountains and their underwater slopes are extremely steep by submarine slope standards: gradients of 15-10˚ are common. [This is in contrast by the way with the relatively gentle slopes of 3-8˚ the subaerial flanks of the volcanoes, a difference that – it just occurred to me – has to do something with the different thermal conductivities of water and air. Water is ~24 times more efficient at cooling lavas, or anything for that matter, than air, so once a volcano sticks its head out of the water, basaltic lava flows are pretty efficient at carrying volcanic material far away from the crater, thus building gently sloping shield volcanoes. The same flows are promptly solidified and stopped by the cool ocean waters as soon as they reach the coast.] Slopes that are this steep are also unstable; the underwater parts of these volcanoes tend to fail from time to time and large volumes of rock rapidly move to deeper waters as giant submarine landslides. Seafloor mapping around the islands revealed that the underwater topography is far from smooth; instead, in many places it consists of huge slide and slump blocks.

Topographic map of the Big Island. Note the location of Kealakekua Fault and the rugged seafloor to the southwest of it, marking the area affected by slides and slumps. This is a map based on higher-resolution bathymetric data collected during a collaborative effort led by JAMSTEC (Japan Marine Science and Technology Center). Source: U.S. Geological Survey Geologic Investigations Series I-2809 

Kealakekua Fault is probably part of the head scarp of one such giant landslide, called the Alika landslide. This explains the steep slopes in the bay itself: after a narrow wave-cut platform, a spectacular wall covered with coral – the continuation of the cliff that you can see onshore – dives into the deep blue of the ocean as you float away from the shore. In contrast with submarine landslides that involve well stratified sediments failing along bedding surfaces and forming relatively thin but extensive slide deposits, the Hawaiian failures affect thick stacks of poorly layered volcanic rock and, as a result, both their volumes and morphologic relief are larger (see the paper by Lipman et al, 1988). The entire volume of the Alika slide is estimated to be 1500-2000 cubic kilometers. That is about a hundred times larger than all the sediment carried by the world’s rivers to the ocean in one year! The slides have moved at highway speeds and generated tsunamis. There is evidence on Lanai island for a wave that carried marine debris to 325 meters above sea level; this tsunami was likely put in motion by the Alika landslide*.

You don’t want to be snorkeling in Kealakekua Bay when something like that happens. And it will happen again, it is a matter of (geological) time. Giant underwater landslides are part of the normal life of these mid-ocean, hotspot-related volcanoes.

Reference
Lipman, P., Normark, W., Moore, J., Wilson, J., Gutmacher, C., 1988, The giant submarine Alika debris slide, Mauna Loa, Hawaii. Journal of Geophysical Research, vol. 93, p. 4279-4299.

*tsunamis generated by landslides is a whole new exciting subject that we have no time now to dive or snorkel into.

More reasons to conclude that coastal ‘chevrons’ are not related to mega-tsunamis

ResearchBlogging.org If there was any doubt left that coastal sand accumulations called ‘chevrons’ are *not* related to gigantic tsunamis (see previous thoughts on the subject here and here; Ole also has a recent blog post, and see a news release here), the May issue of Geology provides additional arguments to show that this is the case. Joanne Bourgeois of University of Washington and Robert Weiss of Texas A&M University, both experts in the sedimentology of tsunami deposits, present two lines of arguments. First they show that the orientation of the Madagascar chevrons is significantly different from what is predicted through modeling the tsunami. While the tsunami wave tends to hit the coast with an overall perpendicular orientation, due to wave refraction, the ‘chevrons’ are oriented at various angles to the coast, angles that are more consistent with predominant wind directions. Second, they look at the sediment transport conditions and suggest that even coarse sand must have been in suspension in flows deep enough to create the chevrons. However, dune-like bedforms cannot develop without sediment being transported as bedload; therefore, the bedforms must have a different origin than mega-tsunamis. The obvious alternative is parabolic dunes; these well-known bedforms show up when vegetation partially covers the dune’s tails and slows down sediment transport. The authors don’t hesitate to draw the conclusion that

The extraordinary claim of “chevron” genesis by mega-tsunamis cannot withstand simple but rigorous testing.

I am far from being a tsunami expert, but I find this subject fascinating. The issue of suspended load vs. bedload and stratified or laminated vs. graded bedding is equally important for deposition from tsunami waves and turbidity currents. It is worth spending a bit of time and blogspace to explore the kind of analysis of sediment transport conditions that this paper presents.

Although I see no reasons to disagree with the paper’s conclusions (as it could be predicted from my previous posts on the subject), at first reading I didn’t fully understand the line of reasoning about suspended load vs. bedload. So here goes my attempt to understand it.

The argument goes as follows. The Rouse number is the ratio between the settling velocity of a certain grain size and the shear velocity of the flow, multiplied by von Karman’s constant (which is ~0.4): Ro = ws/k*u_shear. For a grain of a given size, if the Rouse number is larger than 2.5, the grain’s settling velocity is much larger than the upward-directed component of the turbulence, and the grain tends to stay close to the bottom, in the bedload. [This is equivalent to saying that the settling velocity has to be larger or equal to the shear velocity, a condition also known as the suspension criterion]. If the Rouse number is less than 0.8, the flow is turbulent enough to keep the grain fully suspended. In between these values, there is a zone of transitional behavior. For the flows that might have deposited the chevrons, the Rouse number is always less than 2.5, regardless of how the other parameters like the Froude number, grain diameter, and roughness length are varied. Although the authors state that the flows must have been deeper than 8 m (because most chevrons are higher than 4 m, and the flow must be at least twice as high as the bedform), there seems to be no other constraint on tsunami behavior [note that I did not have access – yet – to the supplementary web material].

So the question is: doesn’t this reasoning apply to other types of flows as well? For example, the Mississippi River is certainly deeper than 8 m in many places — does this mean that it is able to suspend very coarse (2 mm diameter) sand? In other words, what is the difference between flow in a tsunami run-up and the Mississippi River? The answers might be obvious to many, but they are certainly not obvious to me.

One thing we can do is to create a different kind of plot: instead of plotting the Rouse number against flow depth, let’s plot velocity vs. depth. I have a better feeling for what are reasonable velocities for different kind of flows than I do for Rouse numbers. The Rouse number would form the third dimension of the plot; one can visualize that as a contour map of Rouse numbers as a function of flow depth and velocity:


The Rouse numbers shown in this plot are valid for a grain diameter of 2 mm and roughness length of 1 m (using the same equations for settling velocity and shear velocity as in Bourgeois & Weiss 2009). Anything coarser than this cannot be called sand any more. So if this grain size doesn’t stay in the bedload, there is no chance for finer sediment either. It is obvious from the plot that, for flows deeper than 8-10 m, very coarse sand will be part of the bedload unless flow velocity is larger than ~5 m/s. The Mississippi River at New Orleans has velocities on the scale 1.5 m/s, so 1-2 mm sand should definitely stay close to the bottom, and in fact it does.

We know however that tsunamis are not exactly tranquil flows like the big old Mississippi at New Orleans. The larger ones are fast and furious and Google Earth might need massive updates after they rearrange entire coastal landscapes. [Don’t get me wrong, I am not trying to diminish the power and destructive force of the Mississippi.] In other words, the Froude number of a tsunami run-up is larger than the Froude number of the Mississippi River. The Mississippi is relatively slow and deep; the tsunami is fast and relatively shallow. The Froude number is the ratio between velocity and the square root of gravity multiplied by flow depth:

Fr = u/√(g*d)

This number for the Mississippi is much less than one (these flows are called subcritical flows). On the other hand, tsunamis are waves of very large wavelengths, and they behave even in the open ocean as shallow water waves (wavelength 20 times larger than water depth). For these kinds of waves, the velocity is solely a function of water depth:

u = √(g*d)

If we assume that the tsunami run-up has a comparable velocity to that of the tsunami wave in the nearshore zone, we find that the Froude number of the run-up must be around 1. This is obviously a very back-of-the-envelope argument, but the point is that these flows must have in general relatively large Froude numbers. If we plot the lines for Fr = 1 and Fr =1.5 on the depth-velocity diagram (see above), we can see how different likely tsunami behavior is from that of large rivers. It also becomes evident that even coarse sand would not be part of the bedload in these flows, especially not in flows deep enough to build the ‘chevrons’. Which means that sandy tsunami deposits are likely to be largely unstructured or poorly structured sand sheets rather than several m thick accumulations of cross-bedded sand.

And that ends my Saturday exercise in Fluid Mechanics 101.

Reference
Bourgeois, J., & Weiss, R. (2009). “Chevrons” are not mega-tsunami deposits–A sedimentologic assessment Geology, 37 (5), 403-406 DOI: 10.1130/G25246A.1

Links to this post:
Scientia Pro Publica #4

Normal grading

In sedimentology, the word ‘grading’ has nothing to do with exams and assignments. Instead, it refers to a regularly decreasing or increasing grain size within one sedimentary layer. Because it is much more common than the other alternative, upward decreasing grain size is called ‘normal grading’. Grains that consistently increase in size toward the top of the bed are responsible for ‘inverse grading’. Upward fining and coarsening are related terms that are often used to describe grain-size trends in not one, but multiple beds.

Normal grading in a turbidite from the Talara Basin, Peru

The simplest way to generate normal grading is to put some poorly sorted sand and water in a container, shake it up, and then let it settle. The larger grains will settle faster than the smaller ones (as Stokes’ law tells us) and most of the large grains will end up at the bottom of the deposit. [Note that some fine grains will be at the bottom as well – the ones that were already close to the bottom at the beginning of sedimentation.] This kind of static suspension settling is not how most sediment is deposited on a river bed or a beach; even if a grain is part of the suspended load, it usually goes through a phase of bedload transport, that is, a phase of jumping and rolling and bouncing on the bed, before it comes to rest. The resulting deposit usually has lots of thin layers, laminations, and there are no obvious and gradual upward changes in grain size.

What is needed is a sediment-rich flow that suddenly slows down or spreads out and looses its power to carry most of its sediment load. Grains are getting to the bottom so fast that there is not much time for the flow to keep them rolling and bouncing around; instead they quickly get buried by the other grains that are ready to take a geological break. While this is still quite different from static suspension settling (because the flow did not come to a full stop), it can be thought of as a modified version of static settling: all is needed is a horizontal velocity component, in addition to the vertical one. Of course, the segregation of the coarser grains to the bottom of the flow may have started much earlier. Typically, they never made it to the top in the first place.

Conglomerate bed in the Cretaceous Cerro Toro Formation, Torres del Paine National Park, Southern Chile. There is some inverse grading at the base of this bed, before the size of the clasts starts decreasing

Such large, sediment-laden flows are not very common, certainly not on a human timescale. When they do occur, they tend to show up in the news, especially if human artifacts, or humans themselves, become part of the normally graded deposits. Deposits of snow avalanches, volcanic ash-laden pyroclastic flows, subaerial debris flows, tsunamis, submarine turbidity currents can all show normal grading. The images shown here all come from deposits of large submarine gravity flows. Some of them (like the one below) have a muddy matrix, but the grading is still obvious (the two large clasts at the top of the bed have lower densities).

Normally graded conglomerate layer with a muddy matrix, Cerro Toro Formation, Chile

In recent years, some questions have been raised about the common presence of normal grading, especially in turbidites. The fact is that normal grading is often seen in rocks of all ages, and, in a simple view, it is a reflection of larger grains getting quickly to the bottom.

Normal grading is normal, after all.

Some questions about the ‘megatsunami chevrons’: addendum

ResearchBlogging.org A couple of months ago I have written about some coastal ‘chevron dunes’ that have been interpreted as the onshore deposits of humongous tsunamis. The subject has been on the tip of my fingers for quite some time and I thought I managed to google up most of the related papers, news articles, and blog posts, but it turns out that I missed one highly relevant discussion: in the January 2008 issue of GSA Today, there is a short paper by Nicholas Pinter and Scott E. Ishman of Southern Illinois University, entitled “Impacts, mega-tsunami, and other extraordinary claims“. [Note to self: looking things up in Google and Google Scholar is not always enough, not even for blogging.]

Pinter and Ishman criticize both the idea that several impact-related megatsunamis occurred during the last 10,000 years and the hypothesis that a 12,900 year old impact caused “Younger Dryas climate event, extinction of Pleistocene mega-fauna, demise of the Clovis culture, the dawn of agriculture, and other events”. The first idea is promoted by Dallas Abbott (at Lamont Doherty Earth Observatory) and her co-workers, but there is no real peer-reviewed publication yet; the second has been put forward by Richard Firestone (of the Lawrence Berkeley National Laboratory) et al. in Proceedings of the National Academy of Sciences and a book. The evidence for the 12.9-ka impact includes magnetic grains, microspherules, iridium, glass-like carbon, carbonaceous deposits draped over mammoth bones, fullerenes enriched in 3He, and micron-scale “nanodiamonds”. Pinter and Ishman suggest that

the data are not consistent with the 4–5-km-diameter impactor that has been proposed, but rather with the constant and certainly noncatastrophic rain of sand-sized micrometeorites into Earth’s atmosphere.

But I am going to focus here on the ‘chevron dune’ part of the story. Pinter and Ishman have essentially the same main issue that I have blogged about: landforms that are morphologically identical to the so-called chevron dunes are well-known in the literature and they are called parabolic dunes. There is no need to introduce a new term:

We suggest that these Holocene features are clearly eolian, and that the term “chevron” should be purged from the impact-related literature.

The eolian origin of the alleged megatsunami deposits is difficult to deny taking into account that wind direction measurements at two sites perfectly match the orientation of the sand dunes (figure from Pinter and Ishman):

Dallas Abbott and her co-workers address Pinter and Ishman’s criticisms in a short reply. This is what they have to say about the chevron dunes:

Pinter and Ishman also claim that chevron dunes in Madagascar and on Long Island are aeolian in origin. We visited both locations and found many features that seem incompatible with an aeolian origin. First, parts of the chevrons in both locations contain fist-sized rocks. These rocks are too large to be transported by the wind. Second, the orientations of the chevrons do not match the current prevailing wind direction. In both areas, some of the thicker sand deposits are being reworked into classic windblown dunes. The direction of movement of these dunes differs 8° to 22° from the long-axis of the chevrons. Third, the degree of roundness of the grains in the chevrons is not characteristic of wind transport over long distances. In both locations, sand grains on the distal ends of the chevrons are not well sorted or well rounded. Sand moved by the wind obtains an aeolian size and sorting distribution after only 10–12 km of saltation transport (Sharp, 1966); however, at Ampalaza in Madagascar, the chevron is >40 km long and rises to 63 m above sea level. At its distal end, the chevron is 7.2 km in a direct line from the coast and contains unbroken, unabraded marine microfossils and conchoidally fractured sand grains. It is impossible to transport unabraded marine microfossils to this location via wind-generated saltation. The site is too far above sea level for storm waves, and there is no local agricultural activity. The chevron was deposited by a tsunami.

Well, these seem valid counterarguments at first sight — but it would be nice and it would be time to see actual data: images, measurements, grain size distributions. Which parts of the chevrons are reworked into eolian dunes? What is the difference in the morphology of tsunami dunes and eolian dunes? How does this relate to flow dynamics? What are those “rocks” that occur within the dunes? Where do they occur exactly? And so on. The fact that the authors end their reply with an unqualified strong statement like “The chevron was deposited by a tsunami” suggests that they are unwilling to admit that not every piece of evidence favors their interpretation and that some legitimate questions can be raised. They do this after first admitting that parts of the dunes were indeed reworked into classic wind-blown dunes.

So, at least as far as the ‘chevron dunes’ are concerned, I have to concur with Pinter and Ishman’s harsh conclusion:

Both the 12.9-ka impact and the Holocene mega-tsunami appear to be spectacular explanations on long fishing expeditions for shreds of support. Both stories have played out primarily in the popular press, highlighting how successful impact events can be in attracting attention. The desire for such attention is understandable in an environment where science and scientific funding are increasingly competitive. The National Science Foundation now emphasizes “transformative” research, and few events are as transformative as an impact. In an era when evolution, geologic deep time, and global warming are under assault, this type of “science by press release” and spectacular stories to explain unspectacular evidence consume the finite commodity of scientific credibility.

References

Pinter, N., Ishman, S.E. (2008). Impacts, mega-tsunami, and other extraordinary claims. GSA Today, 18(1), 37. DOI: 10.1130/GSAT01801GW.1

Abbott, D.H., Bryant, E.F., Gusiakov, V., Masse, W., Breger, D. (2008). Impacts, mega-tsunami, and other extraordinary claims: COMMENT. GSA Today, 18(6), e12.

Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., Belgya, T., Kennett, D.J., Erlandson, J.M., Dickenson, O.J., Goodyear, A.C., Harris, R.S., Howard, G.A., Kloosterman, J.B., Lechler, P., Mayewski, P.A., Montgomery, J., Poreda, R., Darrah, T., Hee, S.S., Smith, A.R., Stich, A., Topping, W., Wittke, J.H., Wolbach, W.S. (2007). Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences, 104(41), 16016-16021. DOI: 10.1073/pnas.0706977104

Some questions about the ‘megatsunami-chevrons’

The allegedly tsunami-related chevron-shaped nearshore deposits are back in the center of attention, at least among geo-bloggers. And rightly so: the idea that lots of coastal sand sheets all over the world were generated by relatively recent, impact-related mega-tsunamis of unimaginable scale is a fascinating hypothesis and, if proven true, it would revolutionize not only our understanding of frequency of meteorite impacts, but also change the predominant views about coastal geomorphology.

However, I have to confess that I find the geomorphologic and sedimentologic side of the argument fairly weakly constructed and documented, at least in the papers I was able to google up. Here are a few questions that could be asked to clarify some issues.

Many of the aerial photographs of the so-called chevrons could be used as textbook examples of parabolic dunes. Parabolic dunes are U-shaped wind-blown dunes usually fed by coastal sand deposits. Their nose points in a downwind direction, that is, the opposite way from barchan dunes. While wind strengths, direction, and sediment source are the main players in the generation of barchan dunes, vegetation plays a key role in the development of parabolic dunes. The ‘arms’ of a parabolic dune are left behind because they have a lower migration rate than the main body and the nose. The lower migration rate is due to plant growth in areas of lower sedimentation and/or erosion. There is a strong correlation between vegetation cover and dune migration rate or activity. This image comes from a recent paper by Duran et al.,


and it shows active (on the left) and inactive (on the right) parabolic dunes. Here is a sketch (source):


So the question is: if ‘chevrons’ are indeed different from classic eolian parabolic dunes, what is this difference, both geomorphologically and sedimentologically? Are they internally stratified? Do they show large-scale cross-bedding? What are the typical grain size distributions? Are they different from typical wind-blown sand? (One of the arguments is that large boulder fields occur in several places; however, my impression is that the boulders described here do not occur within, below, above, or right next to any chevron deposits. This short report claims that large pieces of rock are all over the place in the Madagascar chevrons, but no actual data is presented). The Madagascar chevrons featured in the New York Times show the signatures of typical parabolic dunes: U-shape, vegetated back sides and sandy crest plus nose. Why would an old tsunami deposit be vegetated only in certain places? The simple fact that these dunes are not entirely covered by vegetation suggests that their sandy parts do consist of wind-blown sand. Of course, tsunami deposits can be reworked by the wind, but why would the tsunami-related morphology be so well in tune with the eolian signature?

Second, if the chevrons are indeed produced by tsunamis, the tsunamis must have been humongous. Dune heights are related to flow depth, and a rule of thumb is that flow depth has to be around 6 times the dune height. So a 50 m high dune would require a 300 m high wave. Is that really possible? How big an impact do you need to generate such humongous waves? Also, what about the backwash? Why are most of the chevron dunes pointing systematically in one direction, and do not seem to be altered by any seaward oriented flow?

Third, are any features of the chevrons consistent with what we know about well-documented recent and ancient tsunami deposits? Tsunami-related sandy layers tend to be comparable to turbidites: largely unstratified, normally graded units suggesting rapid deposition from flows of decreasing velocity; they do not show large-scale cross bedding that requires relatively steady flow over longer time scales. In contrast, the chevron morphologies suggest that they are internally well-stratified, as the result of stoss-side avalanches. Here is a sand layer from the 1998 Papua New Guinea tsunami (source):

Obviously, it may turn out that there are tsunami-related coastal dunes and wind-blown parabolic dunes, with very similar morphologies, but fundamentally different origins. At the moment, the geomorphologic and sedimentologic evidence for this extraordinary hypothesis seems quite preliminary. And, needless to say, extraordinary claims require extraordinary evidence.

ps. 1: Lots of information on tsunami deposits here.
And a paper arguing for wind-blown origin of some deposits from the Bahamas, previously interpreted as tsunami-related: Kindler, P. & Strasser, A. (2000) Palaeoclimatic significance of co-occurring wind- and water-induced sedimentary structures in the last-interglacial coastal deposits from Bermuda and the Bahamas. Sedimentary Geology 131, 1-7.

ps. 2: More good stuff on megatsunamis and their deposits at Highly Allochthonous.